Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Christophe M. L. Vande Velde, Cindy Wuyts, Herman J. Geise and Frank Blockhuys*

Structural Chemistry Group, University of Antwerp, Universiteitsplein 1, B-2610 Antwerpen, Belgium

Correspondence e-mail:
frank.blockhuys@ua.ac.be

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.041$
$w R$ factor $=0.117$
Data-to-parameter ratio $=11.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

2-(4-Methylphenyl)-1,1-diphenylethene

In the crystal structure of the title compound, $\mathrm{C}_{21} \mathrm{H}_{18}$, the Tshaped molecules adopt a packing arrangement which does not display any special intermolecular interactions.

Comment

The title compound, (I), was synthesized as a precursor material for a functionalized 1,4-bis(2,2-diphenylethenyl)benzene, which can be grafted on to a polystyrene backbone in order to combine the blue electroluminescence of the molecule (Yang, Heremans et al., 2000; Yang, Jin et al., 2000) with the excellent processing characteristics of polystyrene.

(I)

The molecular structure of (I) is shown in Fig. 1. The bond distances and angles are normal and in the crystal structure there are no intermolecular contacts shorter than the sum of the van der Waals radii. There is only one intermolecular contact conforming to the geometrical criteria that are generally accepted for a T-shaped phenyl-phenyl interaction [see, for example, McGauchey et al. (1998) and Meyer et al. (2003)]: $\mathrm{C} 5(-\mathrm{H} 5) \cdots \mathrm{Cg} C^{\mathrm{i}}=3.27$ (2) \AA and $\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{Cg} C^{\mathrm{i}}=$ 147.3° [$C g C$ is the centroid of the ring C; symmetry code: (i) $1+x, y, z]$. There are, however, a large number of interactions that exist between the benzene rings due to their close

Figure 1

The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Received 9 January 2004 Accepted 13 January 2004 Online 23 January 2004
proximity, but these interactions do not conform to the above criteria. Of the three compounds in the Cambridge Structural Database (Version 5.25; Allen, 2002) that contain a similar 1,1-diphenyl-2-phenylethene fragment, HADCEU and HADCIY (Chiba, 1993) have additional phenyl rings in another functional group which, together, can display well defined interactions. REDFEL (Bartholomew et al., 2000) displays a geometry which is very similar to the one presented here, but with two molecules in the asymmetric unit, allowing it to arrange the six symmetry-independent rings in a pattern that generates several standard phenyl-phenyl interactions. The only possible conclusion regarding the crystal structure of (I) is that the steric requirements in this molecule outweigh the additional stabilization obtained by the construction of an extended network of parallel-displaced or T-shaped phenylphenyl interactions. Nevertheless, the interactions that exist between the benzene rings stabilize the structure sufficiently to allow crystallization with only three symmetry-independent rings in the structure.

Experimental

All starting materials were obtained from Acros or Aldrich and used as received. Dimethylformamide (DMF) was dried over 3 A molecular sieves. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian Unity-400 apparatus in CDCl_{3} with tetramethylsilane (TMS) as the internal reference. For the synthesis of (4-methylbenzyl)diethylphosphonate, (II), a mixture of α-chloro- p-xylene $(21 \mathrm{~g}, 0.15 \mathrm{~mol})$ and triethyl phosphite ($48.1 \mathrm{~g}, 0.29 \mathrm{~mol}$) was gently refluxed for 8 h . The mixture was then cooled to room temperature, the excess triethylphosphite evaporated off and the resulting liquid used without further purification. For the synthesis of 1-(2,2-diphenylethenyl)-4methylbenzene, (I), a solution of (II) $(9.6 \mathrm{~g}, 30 \mathrm{mmol})$ and benzophenone ($5.5 \mathrm{~g}, 30 \mathrm{mmol}$) in 50 ml of dry DMF was stirred and refluxed under nitrogen protection. Potassium tert-butoxide (3.6 g , 32 mmol) was added portionwise and the mixture refluxed for 2 d . After cooling to room temperature, the solution was added to 500 ml of water. A pale yellow solid precipitated and was collected by filtration. Purification by refluxing in methanol yielded $2.3 \mathrm{~g}(28 \%)$ of the pure product [m.p. 342-343 K (uncorrected)]. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta 2.24\left(s, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 6.91(\mathrm{~m}, 5 \mathrm{H}$, aromatic and olefinic protons), 7.30 ($m, 10 \mathrm{H}$, aromatic and olefinic protons). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 21.13$ $\left(\mathrm{CH}_{3}\right), 127.30,127.31,127.52,128,13,128.17,128.63,128.71,129.48$, 130.40, 134.57 (q), 136.56 (q), 140.64 (q), 141.74 (q), 143.57 (q). Irregularly shaped crystals, suitable for X-ray diffraction, were grown from hot methanol.

Crystal data

[^0]
Data collection

Enraf-Nonius MACH3
$\theta_{\text {max }}=25.0^{\circ}$
diffractometer
$\omega / 2 \theta$ scans
Absorption correction: none
5826 measured reflections
2787 independent reflections
1355 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.051$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.117$
$S=0.95$
2787 reflections
237 parameters

H atoms were placed in calculated positions and for the majority their coordinates were refined, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. For methyl atom C21, the H atoms were constrained, allowing the methyl group to rotate and the hydrogen distances to refine, but keeping the $\mathrm{H}-$ $\mathrm{C}-\mathrm{H}$ angles fixed at 109.5°; here $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2003).

CVV thanks the Fund for Scientific Research (FWO Vlaanderen) for a grant as a research assistant. CW thanks the Institute for the Promotion of Innovation by Science and Technology in Flanders (IWT) for a predoctoral grant. The authors also thank Professor R. Dommisse and J. Aerts for the recording of the NMR spectra.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Bartholomew, G. P., Bazan, G. C., Bu, X.-H. \& Lachicotte, R. J. (2000). Chem. Mater. 12, 1422-1430.
Chiba, E. (1993). Acta Cryst. C49, 1511-1514.
Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5.1/1.2. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Harms, K. (1996). XCAD4. University of Marburg, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELX97. Release 97.2. University of Göttingen, Germany.
Spek, A. L. (2003). PLATON. Utrecht University, The Netherlands.
McGauchey, G. B., Gagné, M. \& Rappé, A. K. (1998). J. Biol. Chem. 273, 15458-15463.
Meyer, E. A., Castellano, R. K. \& Diederich, F. (2003) Angew. Chem. Int. Ed. 42, 1210-1250.
Yang, J. P., Heremans, P. L., Hoefnagels, R., Tachelet, W., Dieltiens, P., Blockhuys, F., Geise, H. J. \& Borghs, G. (2000). Synth. Met. 108, 95-100.
Yang, J. P., Jin, Y. D., Heremans, P. L., Hoefnagels, R., Dieltiens, P., Blockhuys, F., Geise, H. J., Van der Auweraer, M. \& Borghs, G. (2000). Chem. Phys. Lett. 325, 251-256.

[^0]: $\mathrm{C}_{21} \mathrm{H}_{18}$
 $M_{r}=270.35$
 Monoclinic, $P 2_{1} / c$
 $a=8.9060$ (10) A
 $b=16.768$ (3) \AA
 $c=10.628$ (3) \AA
 $\beta=93.39$ (2) ${ }^{\circ}$
 $V=1584.4$ (6) \AA^{3}
 $Z=4$

